3.181 \(\int \frac{\cos ^{\frac{9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=160 \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{56 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac{3 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{a^2 d (\cos (c+d x)+1)}+\frac{56 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{15 a^2 d}-\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{a^2 d}-\frac{\sin (c+d x) \cos ^{\frac{7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

(56*EllipticE[(c + d*x)/2, 2])/(5*a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c
 + d*x])/(a^2*d) + (56*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) - (3*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(a^2*
d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^(7/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.219112, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2765, 2977, 2748, 2635, 2641, 2639} \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{56 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac{3 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{a^2 d (\cos (c+d x)+1)}+\frac{56 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{15 a^2 d}-\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{a^2 d}-\frac{\sin (c+d x) \cos ^{\frac{7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(56*EllipticE[(c + d*x)/2, 2])/(5*a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c
 + d*x])/(a^2*d) + (56*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) - (3*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(a^2*
d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^(7/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \frac{\cos ^{\frac{5}{2}}(c+d x) \left (\frac{7 a}{2}-\frac{11}{2} a \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{3 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \cos ^{\frac{3}{2}}(c+d x) \left (\frac{45 a^2}{2}-28 a^2 \cos (c+d x)\right ) \, dx}{3 a^4}\\ &=-\frac{3 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{15 \int \cos ^{\frac{3}{2}}(c+d x) \, dx}{2 a^2}+\frac{28 \int \cos ^{\frac{5}{2}}(c+d x) \, dx}{3 a^2}\\ &=-\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac{56 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac{3 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{5 \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a^2}+\frac{28 \int \sqrt{\cos (c+d x)} \, dx}{5 a^2}\\ &=\frac{56 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac{56 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac{3 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 2.50988, size = 367, normalized size = 2.29 \[ \frac{\cos ^4\left (\frac{1}{2} (c+d x)\right ) \left (-\frac{2 \csc (c) \sqrt{\cos (c+d x)} \left (40 \sin ^2(c) \cos (d x)-6 \sin (c) \sin (2 c) \cos (2 d x)+8 \cos (c) (5 \sin (c) \sin (d x)+27)-6 \sin (c) \cos (2 c) \sin (2 d x)-10 \sin \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^3\left (\frac{1}{2} (c+d x)\right )+240 \sin \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec \left (\frac{1}{2} (c+d x)\right )-5 \sin (c) \tan \left (\frac{c}{2}\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right )+120\right )}{3 d}+\frac{4 i \sqrt{2} e^{-i (c+d x)} \left (56 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+25 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+56 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{5 a^2 (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(56*(1 + E^((2*I)*(c + d*x))) + 56*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^
((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - (2*Sqrt[Cos[c + d*x]]*Csc[c]*(120 + 40*Cos[d*x]*
Sin[c]^2 - 6*Cos[2*d*x]*Sin[c]*Sin[2*c] + 240*Sec[(c + d*x)/2]*Sin[c/2]*Sin[(d*x)/2] - 10*Sec[(c + d*x)/2]^3*S
in[c/2]*Sin[(d*x)/2] + 8*Cos[c]*(27 + 5*Sin[c]*Sin[d*x]) - 6*Cos[2*c]*Sin[c]*Sin[2*d*x] - 5*Sec[(c + d*x)/2]^2
*Sin[c]*Tan[c/2]))/(3*d)))/(5*a^2*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 2.619, size = 283, normalized size = 1.8 \begin{align*} -{\frac{1}{30\,{a}^{2}d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 96\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{10}-352\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}+120\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-150\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-336\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +266\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-135\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+5 \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(9/2)/(a+cos(d*x+c)*a)^2,x)

[Out]

-1/30*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(96*cos(1/2*d*x+1/2*c)^10-352*cos(1/2*d*x+1/2*c)
^8+120*cos(1/2*d*x+1/2*c)^6-150*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-336*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+266*cos(1/2*d*x+1/2*c)^4-135*cos(1/2*d*x+1/2*c)^2+
5)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cos \left (d x + c\right )^{\frac{9}{2}}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(9/2)/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)